Nimmi Ramanujam

Image of Nimmi Ramanujam

Robert W. Carr, Jr., Professor of Biomedical Engineering

Since coming to Duke University in 2005, Prof. Ramanujam has established the Tissue Optical Spectroscopy laboratory. Prof. Ramanujam's group is innovating on optical strategies to peer into the biological landscape of thick tissues. Technologies being developed in her lab leverage principles of optical spectroscopy, optical sectioning microscopy, and molecular imaging. Her research group is developing and applying these optically based tools for three problems in cancer: cancer screening in resource-limited settings, intra-operative margin assessment to detect residual disease during cancer surgery, and visualizing tumor hypoxia and metabolism in the context of cancer therapy and drug discovery. Prof. Ramanujam is leading a multi-disciplinary effort to translate these technologies to clinical applications in the breast, and cervix. In addition to her academic efforts, Prof. Ramanujam has spun out a company, Zenalux, to commercialize several of the technologies developed in her lab.  

In October of 2013, Dr. Nimmi Ramanujam founded the Global Women’s Health Technologies Center. The Global Women’s Health Technologies Center reflects a partnership between the Pratt School of Engineering and the Duke Global Health Institute and is led by Center Director Nimmi Ramanujam, professor of biomedical engineering and global health. The center’s mission is to increase research, training and education in women’s diseases, with a focus on breast cancer, cervical cancer, and maternal-fetal health; and to increase retention of women and underrepresented minorities in Science, Technology, Engineering, and Mathematics (STEM) educational disciplines locally and globally.

Prof. Ramanujam has received several awards for her work in cancer research and technology development for women's health. She received the TR100 Young Innovator Award from MIT in 2003, a $2.5M DOD Era of Hope Scholar award in 2004, the Global Indus Technovator award from MIT in 2005 and a $3M Era of Hope Research Scholar award in 2009 and an NIH BRP grant in 2011. In 2011, she received the Stansell Family Distinguished Research Award from the Pratt School of Engineering at Duke University. Dr. Ramanujam is a fellow of OSA, SPIE and AIMBE.  

She is member of the NIH BMIT-A study section and chair elect of the DOD’s breast cancer research program (BCRP) integration panel (IP) that sets the vision of the BCRP program and plans the dissemination of over $100 M of funds for breast cancer research annually. She is co-editor  of the Handbook of Biomedical Optics (publisher Taylor and Francis).  

Dr. Ramanujam earned her Ph.D. in Biomedical Engineering from the University of Texas, Austin in 1995 and then trained as an NIH postdoctoral fellow at the University of Pennsylvania from 1996-2000. Prior to her tenure at Duke, she was an assistant professor in the Dept. Biomedical Engineering at the University of Wisconsin, Madison from 2000-2005.

Appointments and Affiliations
  • Robert W. Carr, Jr., Professor of Biomedical Engineering
  • Robert W. Carr, Jr., Professor of Biomedical Engineering
  • Professor of Biomedical Engineering
  • Research Professor of Global Health
  • Professor of Pharmacology and Cancer Biology
  • Member of the Duke Cancer Institute
  • Director for the Center for Global Women's Health Technologies
Contact Information:
Education:

  • Ph.D. University of Texas at Austin, 1995
  • M.S. University of Texas at Austin, 1992
  • B.S. University of Texas at Austin, 1989

Research Interests:

Innovating on optical strategies to peer into the biological landscape of thick tissues. Technologies being developed in her lab leverage principles of optical spectroscopy, optical sectioning microscopy, and molecular imaging. Her research group is developing and applying these optically based tools for three problems in cancer: cancer screening in resource-limited settings, intra-operative margin assessment to detect residual disease during cancer surgery, and visualizing tumor hypoxia and metabolism in the context of cancer therapy and drug discovery. Prof. Ramanujam is leading a multi-disciplinary effort to translate these technologies to clinical applications in the breast, and cervix.

Specialties:

Medical Imaging
Photonics
Cancer diagnostics and therapy
Medical Instrumentation
Medical Diagnostics

Courses Taught:
  • BME 290: Intermediate Topics (GE)
  • BME 290L: Intermediate Topics with Lab (GE)
  • BME 394: Projects in Biomedical Engineering (GE)
  • BME 493: Projects in Biomedical Engineering (GE)
  • BME 494: Projects in Biomedical Engineering (GE)
  • BME 551L: Biomedical Optical Spectroscopy and Tissue Optics (GE,IM)
  • ECE 290: Special Topics in Electrical and Computer Engineering
  • EGR 391: Projects in Engineering
  • GLHLTH 390: Special Topics in Global Health Studies

Representative Publications: (More Publications)
    • Chang VTC, Cartwright PS, Bean SM, Palmer GM, Bentley RC, Ramanujam N., Quantitative physiology of the precancerous cervix in vivo via optical spectroscopy, Neoplasia, vol 11 no. 4 (2009), pp. 325-332.
    • J. Q. Brown and L. G. Wilke and J. Geradts and S. A. Kennedy and G. M. Palmer and N. Ramanujam, Quantitative Optical Spectroscopy: A Robust Tool for Direct Measurement of Breast Cancer Vascular Oxygenation and Total Hemoglobin Content In vivo, Cancer Research, vol 69 no. 7 (2009), pp. 2919 -- 2926 [abs].
    • K. Vishwanath and D. Klein and K. Chang and T. Schroeder and M. W. Dewhirst and N. Ramanujam, Quantitative optical spectroscopy can identify long-term local tumor control in irradiated murine head and neck xenografts, Journal Of Biomedical Optics, vol 14 no. 5 (2009) [abs].
    • L. G. Wilke and J. Q. Brown and T. M. Bydlon and S. A. Kennedy and L. M. Richards and M. K. Junker and J. Gallagher and W. T. Barry and J. Geradts and N. Ramanujam, Rapid noninvasive optical imaging of tissue composition in breast tumor margins, American Journal Of Surgery, vol 198 no. 4 (2009), pp. 566 -- 574 [abs].
    • J.H. Ostrander, C.M. McMahon, S. Lem, S.R. Millon, V.L. Seewaldt, N. Ramanujam, The Optical Redox Ratio Differentiates Breast Cancer Cell Lines Based on Receptor Status, Cancer Research, vol 70 no. 11 (2010), pp. 4759-4766.
    • Millon SR, Ostrander JH, Brown JQ, Rajeha AM, Seewaldt VL, Ramanujam N, Uptake of 2-NBDG as a method to monitor therapy response in breast cancer cell lines, Breast Cancer Research and Treatment, vol 126 no. 1 (2011), pp. 55-62.