Master's Study in Medical Technology Design (MedTech)

Duke is uniquely equipped to train the next generation of designers and leaders

The market for medical devices worldwide is growing fast. In the United States alone, the MedTech industry is growing by an average US$7 billion a year.

Few universities are as uniquely equipped as Duke to deliver best-in-class master's-level training in medical technology design. Learn why Duke is a leader in MedTech design.

Duke offers two options for MedTech design training:

Contact admissions »

Alejandro Pino

"Duke's advanced biomedical design courses not only reminded me of the impact engineering can have, but inspired me to continue to combine engineering and medicine."


3 Reasons Why Duke leads in MedTech design

Duke's long history of leadership in biomedical engineering


Design imag of a 4-D ultrasonic scanner

Innovation is in our DNA:

  • First accredited BME major in the United States
  • First real-time 3-D ultrasonic scanner
  • First patented bioabsorbable vascular stent

A faculty of MedTech industry experts

Decades of real-world experience:

  • Best practices in design, from needs-finding to prototyping to development
  • Obtaining regulatory approval and licensing
  • Creating curricula and courses aligned to industry needs

Graduate courses with authentic, real-world challenges

Our students work on challenges from the real world:

  • MedTech students team with Duke clinicians
  • Have the possibility of making real impacts
  • At job interviews, our graduates have those all-important stories to tell

One of those stories—


Master's Degree Program

The 30-credit Medical Technology Design Master of Engineering (MEng) prepares graduates for leadership positions industry.

A program of 10 courses provides exposure to all phases of medical product development—from needs-finding to product launch. Also included are:

  • Business and management courses
  • Required advanced mathematics course and life sciences course
  • Required internship

Apply for Fall Semester start.

How to Apply

Sample 3-Semester Schedule
  Fall 1 Spring 1 Summer 1 Fall 2
Skills Sequence BME 790L.X: Advanced Design and Manufacturing     BME 790L.X: Medical Electrical Equipment
Design Health Sequence BME 790L.X: Design in Health Care 1—Discover BME 790L.X: Design in Health Care 2—Design   BME 790L.X: Design in Health Care 3—Deploy
Business and Management Courses MENG 540: Business Fundamentals BME 590: Quality Management for Biomedical Engineers   MENG 540: Management in High-Tech Industries
Required Math and Life Science Courses   Advanced Math course   Life Science course
Required Internship   MENG 550: Internship Planning MENG: 550 Internship MENG 551: Internship Assessment

 Browse course descriptions »

Cost of Attendance
Funding Opportunities

Because many see the Master of Engineering (MEng) as a professional degree, most students pay their own tuition costs. Many students use student loans and believe there will be an excellent return on investment.

In certain circumstances, we provide limited financial aid.

Diversity Scholarships

Limited financial aid is available to highly qualified candidates through academic scholarships with an emphasis on increasing diversity within our master's degree programs.

Underrepresented minorities may receive up to 50 percent per year in tuition scholarships through our Diversity Scholarships. Additionally, up to $10,000 per year may be allocated to a student to gain experience in a research setting under the direction of a principal investigator (PI).

Externally Funded Scholarships

We also offer support to recipients of some competitively externally funded scholarships, such as:

  • National Science Foundation (NSF) Fellowships
  • Fulbright Scholar Program

On-Campus Work

While enrolled in the program, many students work in a variety of places, such as campus libraries and various departments within Duke. Teaching assistantships and grader jobs are available in various departments.

These positions are paid an hourly rate, and most students work between 10 to 20 hours per week. Positions are generally posted and filled before classes begin each semester.

External Funding Opportunities

Career Services

Duke Engineering provides outstanding career support to master's students. Our career services include:

  • Working with a coach
  • Workshops and events
  • Engaging with employers and industry professionals

4-Course Graduate Certificate

This four-course Duke Graduate Certificate in Medical Technology Design provides Duke BME master's students with exposure to MedTech design fundamentals. The certificate is noted on your Duke transcript.


This certificate program is available to students enrolled in Duke's master's degree programs in Biomedical Engineering:

  • Master of Science (MS), or
  • Master of Engineering (MEng)

Students typically apply for the MedTech graduate certificate during their first semester at Duke. The certificate is completed during the second and third semesters.


The four (4) MedTech courses that fulfill this graduate certificate provide for 12 of the 30 course credits required for a Duke master's degree in biomedical engineering. The courses are:

  • Advanced Design and Manufacturing, or Medical Electrical Equipment
  • Design in Health Care 1, or Design in Health Care 3
  • Design in Health Care 2
  • Quality Management Systems

Browse course descriptions »

Explore This Option

More about Duke's master's degrees in biomedical engineering:


Paul J. Fearis

Paul J. Fearis

Associate Professor of the Practice of Biomedical Engineering

An engineer and industrial designer with decades of experience as a product development consultant to the medical device industry and lecturer at Johns Hopkins University. More »

Kristy Fearis

Kristy Fearis


A biomedical engineer who has managed R&D teams at Medtronic and Edwards Lifesciences who is a specialist in quality management systems and product commercialization. Certified ASQ Quality Manager and Auditor. More »

Joseph A. Knight

Joseph A. Knight

Adjunct Professor

He is president & CEO of InnAVasc Medical Inc., a biomedical engineer, and an MBA graduate of Duke's Fuqua School of Business. More »

Eric S Richardson

Eric S. Richardson

Associate Professor of the Practice of Biomedical Engineering

A biomedical engineer who has managed R&D teams at Medtronic and the founder of two innovation programs at Rice University. More »

MedTech Design Courses

Advanced Design and Manufacturing

This course is designed to bring the practical application of academic engineering to medical design while developing design skills that can be immediately transferred to industry projects—making students attractive prospects to industry recruiters.

The skills course establishes a mindset and set of practical skills that form a foundation for the Design Health sequences. Students also start to build a portfolio of design projects to showcase their design thinking.

Through a series of modules, the skills course introduces Design for Manufacture and important concepts around production cost and the interplay between design choices, manufacturing processes and cost. Medical image reconstruction and the design of an implanted device take students inside the body, designing for specific anatomy and bio-compatibility.

The Duke skills course is supported by industry leader Protolabs, and the program is hugely grateful for their input and assistance in readying students for careers in design and development.

Medical Electrical Equipment
This course will make students aware of the design process and considerations associated with electronics and software functionality in medical devices. Electronic hardware topics will include microcontrollers, data communication protocols (e.g., SPI, I2C, Bluetooth, WiFi, Zigbee), power supplies, analog and digital signal management, UI/UX for input/output, electronic signal transduction, heat management, PCB layout and fabrication, and cabling and connectors.
Software topics will include firmware, server/client communications, Restful APIs, HIPAA, data privacy, cybersecurity, encryption, software development process, continuous integration/deployment, version control systems, and AI-assisted algorithms. The Verification & Validation process for hardware and software will be reviewed, along with relevant industry standards (eg, IEC60601, IEC62304).
Design in Health Care 1—Discover

This course concentrates upon the identification of medical device innovation opportunities through the detailed identification and analysis of unmet, underserved and unarticulated stakeholder needs. Students work closely with clinical staff from Duke Health and other clinical experts to identify needs through primary qualitative research including first-hand observation, stakeholder interviews and other secondary processes.

Utilizing industry best-practice techniques captured in the Insight Informed Innovation process students take a broad area of focus and work with clinicians, engineering and business faculty to focus, identify and specify impactful opportunities that will become the basis of design projects take forward in the Design in Healthcare 2–Design course.

Students define their projects, considering clinical impact, regulatory and reimbursement strategy, technical feasibility and interest with an eye to the generation of intellectual property, licensing and/or startup opportunities.

Design in Health Care 2—Design

In this course, teams take a validated problem from Design in Healthcare 1—Discovery, and then generate broad ranges of solutions, iterate, and mature toward proof of principle and proof of (market) concept prototypes.

Students work in multidisciplinary teams, representative of industry team make-up, including clinical, engineering and business functions to develop engineering solutions, business plans and supporting regulatory documentation as would be required in industry.

Design in Healthcare 2 draws heavily upon the Skills and Quality courses, training students to consider product development as a holistic process where decisions are complex and interrelated.

The course is taught by industry veterans who maintain active industry roles and projects in order to stay current and relevant.

Design in Health Care 3—Deploy

This course progresses a group of active projects from Design in Health Care 2—Design, and other sources, to a level of maturity appropriate for the consideration of licensing and/or startup opportunities.

Largely self-guided, student teams apply risk management and other practices to eliminate unknowns, and generate supporting performance and usability data and investor pitches.

Interaction with Duke Engineering Entrepreneurship (EngEn) and Duke's licensing and venture functions brings a sharp focus to projects—exposing students to the realities of the medical device business today.

Quality Management for Biomedical Engineers

Quality Management Systems (QMS) form the backbone of medical device companies, from specification through development to regulatory submission and commercial launch, medical device designers must be comfortable working with and producing a broad spectrum of supporting documentation.

Using projects from the Design in Health Care courses as the active vehicle, this course introduces students to the workings of industry quality management systems and standards adherence.

Students generate QMS documentation to support development, risk management, design controls and regulatory submissions.

The course is taught by an American Society of Quality-certified Quality Manager and Quality Auditor and equips students with up-to-date practices designed to make the transition into a regulated industry seamless.

MedTech Business Fundamentals

After an introduction to the broader landscape of healthcare innovation (including BioTech, MedTech, and Pharma), the course provides a high-level introduction to the key non-technical areas to consider when bringing forward a medical device—including regulatory, reimbursement, business model, funding, sales, and marketing.

The focus is not only on a basic understanding of each area but also on the interplay between and among each. The course concludes with an exploration of finance-related topics where students learn the importance and application of financial statements to medical device innovation, as well as various methods of how a MedTech company is ultimately valued at acquisition.

Management of High-Tech Industries

This course addresses critical qualities of leadership, management skills, and decision-making in complex environments.

Essential topics include:

  • Leadership and communication principles
  • Strategic decision-making where outcomes depend on high technology
  • Management of project-based and team-based organizational structures
  • Role of the manager in expertise-driven organizations

Contact admissions