Master's Study in Medical Technology Design (MedTech)

Duke is uniquely equipped to train the next generation of designers and leaders

The market for medical devices worldwide is growing fast. In the United States alone, the MedTech industry is growing by an average US$7 billion a year.

Few universities are as uniquely equipped as Duke to deliver best-in-class master's-level training in medical technology design. Learn why Duke leads in MedTech design education.

Duke is a leader in medical device design and offers two options for master's students seeking MedTech design training:

  • A Medical Technology Design Master of Engineering degree More »
  • A Medical Device Design Graduate Certificate More »

Contact admissions »

Alejandro Pino

"Duke's advanced biomedical design courses not only reminded me of the impact engineering can have, but inspired me to continue to combine engineering and medicine."

ALEJANDRO PINO, MD | ELECTRICAL ENGINEER AND DUKE PULMONOLOGY FELLOW

3 Reasons Why Duke leads in MedTech design education

Duke's long history of leadership in biomedical engineering

Design image of a 4-D ultrasonic scanner Innovation is in our DNA.

Duke BME's achievements include:

  • First accredited BME major in the United States
  • The invention of the first real-time 3-D ultrasonic scanner
  • Optimization of biphasic waveforms for cardiac defibrillation
  • The first patented bioabsorbable vascular stent

A faculty of seasoned MedTech industry veterans

Decades of real-world experience:

  • Best practices in design, from needs-finding to prototyping to development
  • Obtaining regulatory approval and licensing
  • Creating curricula and courses aligned to industry needs

Graduate courses with authentic, real-world design problems

Our students work on challenges from the real world, with the possibility of real impact. At job interviews, Duke MedTech graduates have those all-important stories to tell.

Here's one:


Duke Medical Technology Design Master of Engineering

This 30-credit master's degree in medical technology design is intended for those pursuing careers in the medical technology industry.

A program of 10 courses provides exposure to all phases of medical product development—from needs-finding to product launch. Duke MedTech MEng graduates are well-prepared for leadership positions in the industry.

Applications are accepted for Fall semester start. Accepted students matriculate directly into this master's degree program.

How to Apply

Via our application system for Master of Engineering programs


Duke Medical Device Design Graduate Certificate

This four-course curricular pathway provides Duke BME master's students with exposure to MedTech design fundamentals.

  • Available to students in Duke's Biomedical Engineering Master of Science (MS) or Master of Engineering programs (MEng) programs
  • Once matriculated, students may apply to the certificate during their first semester at Duke
  • Accepted students complete the certificate during their second and third semesters
  • Courses for this certificate account for 12 master's course credits of the required 30
  • The certificate is noted on your Duke transcript

To Explore This Option

Learn more about Duke's master's degrees in biomedical engineering:


Faculty

Paul J Fearis

Paul J. Fearis

Associate Professor of the Practice of Biomedical Engineering

An engineer and industrial designer with decades of experience as a product development consultant to the medical device industry and lecturer at Johns Hopkins University. More »

Kristy Fearis

Kristy Fearis

Instructor

A biomedical engineer who has managed R&D teams at Medtronic and Edwards Lifesciences who is a specialist in quality management systems and product commercialization. Certified ASQ Quality Manager and Auditor. More »

Joseph A. Knight

Joseph A. Knight

Adjunct Professor

He is president & CEO of InnAVasc Medical Inc., a biomedical engineer, and an MBA graduate of Duke's Fuqua School of Business. More »

Eric S Richardson

Eric S. Richardson

Associate Professor of the Practice of Biomedical Engineering

A biomedical engineer who has managed R&D teams at Medtronic and the founder of two innovation programs at Rice University. More »


Duke MedTech Design Courses

Students pursuing the Duke MedTech Design Master of Engineering take all courses listed below.

Students pursuing the Graduate Certificate in Medical Device Design take only:

  • Advanced Design and Prototyping Skills 1
  • Advanced Design and Prototyping Skills 2
  • Design in Health Care 2
  • Design in Health Care 3

Advanced Design and Prototyping Skills 1

Required, all programs

This course is designed to bring the practical application of academic engineering to medical design while developing design skills that can be immediately transferred to industry projects—making students attractive prospects to industry recruiters.

The skills course establishes a mindset and set of practical skills that form a foundation for the Design Health sequences. Students also start to build a portfolio of design projects to showcase their design thinking.

Through a series of modules, the skills course introduces Design for Manufacture and important concepts around production cost and the interplay between design choices, manufacturing processes and cost. Medical image reconstruction and the design of an implanted device take students inside the body, designing for specific anatomy and bio-compatibility.

The Duke skills course is supported by industry leader Protolabs, and the program is hugely grateful for their input and assistance in readying students for careers in design and development.

Advanced Design and Prototyping Skills 2

Required, all programs

This course will make student aware of the design process and considerations associated with electronics and software functionality in medical devices. Electronic hardware topics will include microcontrollers, data communication protocols (e.g., SPI, I2C, Bluetooth, WiFi, Zigbee), power supplies, analog and digital signal management, UI/UX for input/output, electronic signal transduction, heat management, PCB layout and fabrication, and cabling and connectors. Software topics will include firmware, server/client communications, Restful APIs, HIPAA / data privacy / cybersecurity / encryption, software development process, continuous integration / deployment, version control systems, and AI-assisted algorithms. The Verification & Validation process for hardware and software will be reviewed, along with relevant industry standards (e.g., IEC60601, IEC62304)..

Design in Health Care 1—Discover

Required for master's degree

This course concentrates upon the identification of medical device innovation opportunities through the detailed identification and analysis of unmet, underserved and unarticulated stakeholder needs. Students work closely with clinical staff from Duke Health and other clinical experts to identify needs through primary qualitative research including first-hand observation, stakeholder interviews and other secondary processes.

Utilizing industry best-practice techniques captured in the Insight Informed Innovation process students take a broad area of focus and work with clinicians, engineering and business faculty to focus, identify and specify impactful opportunities that will become the basis of design projects take forward in the Design in Healthcare 2–Design course.

Students define their projects, considering clinical impact, regulatory and reimbursement strategy, technical feasibility and interest with an eye to the generation of intellectual property, licensing and/or startup opportunities.

Design in Health Care 2—Design

Required, all programs

In this course, teams take a validated problem from Design in Healthcare 1—Discovery, and then generate broad ranges of solutions, iterate, and mature toward proof of principle and proof of (market) concept prototypes.

Students work in multidisciplinary teams, representative of industry team make-up, including clinical, engineering and business functions to develop engineering solutions, business plans and supporting regulatory documentation as would be required in industry.

Design in Healthcare 2 draws heavily upon the Skills and Quality courses, training students to consider product development as a holistic process where decisions are complex and interrelated.

The course is taught by industry veterans who maintain active industry roles and projects in order to stay current and relevant.

Design in Health Care 3—Deploy

Required, all programs

This course progresses a group of active projects from Design in Health Care 2—Design, and other sources, to a level of maturity appropriate for the consideration of licensing and/or startup opportunities.

Largely self-guided, student teams apply risk management and other practices to eliminate unknowns, generate supporting performance and usability data and investor pitches.

Interaction with Duke Engineering Entrepreneurship (EngEn) and Duke's licensing and venture functions brings a sharp focus to projects—exposing students to the realities of the medical device business today.

Quality Management for Biomedical Engineers

Required for master's degree

Quality Management Systems (QMS) form the backbone of medical device companies, from specification through development to regulatory submission and commercial launch, medical device designers must be comfortable working with and producing a broad spectrum of supporting documentation.

Using projects from the Design in Health Care courses as the active vehicle, this course introduces students to the workings of industry quality management systems and standards adherence.

Students generate QMS documentation to support development, risk management, design controls and regulatory submissions.

The course is taught by an American Society of Quality-certified Quality Manager and Quality Auditor, and equips students with up-to-date practices designed to make the transition into a regulated industry seamless.

MedTech Business Fundamentals

Required for master's degree

After an introduction of the broader landscape of healthcare innovation (including BioTech, MedTech, and Pharma), the course provides a high-level introduction to the key non-technical areas to consider when bringing forward a medical device – to include regulatory, reimbursement, business model, funding, sales, and marketing. The focus is not only on basic understanding of each area but also on the interplay between and among each. The course concludes with an exploration of finance-related topics where students learn the importance and application of financial statements to medical device innovation, as well as various methods of how a MedTech company is ultimately valued at acquisition.

Sample Master of Engineering Curriculum

Sample curriculum for the Duke MedTech Design Master of Engineering:

  Year 1—Fall Year 1—Spring Summer Year 2—Fall
Design Course        
Elective        
MEng core course        
Internship        
         

More Program Details

Cost of Attendance

Funding Opportunities

Because many see the Master of Engineering (MEng) as a professional degree, most students pay their own tuition costs. Many students use student loans and believe there will be an excellent return on investment.

In certain circumstances, we provide limited financial aid to MEng students.

Diversity Scholarships

Limited financial aid is available to highly qualified candidates through academic scholarships with an emphasis on increasing diversity within our master's degree programs.

Underrepresented minorities may receive up to 50 percent per year in tuition scholarship through our Diversity Scholarships. Additionally, up to $10,000 per year may be allocated for the student to gain experience in a research setting under the direction of a principal investigator (PI).

Externally Funded Scholarships

We also offer support to recipients of some competitively externally funded scholarships, such as

  • National Science Foundation (NSF) Fellowships
  • Fulbright Scholar Program

On-Campus Work

While enrolled in the program, many students work in a variety of places, such as campus libraries and various departments within Duke University. Teaching assistantships and grader jobs are available in various departments.

These positions are paid an hourly rate, and most students work between 10 to 20 hours per week. Positions are generally posted and filled before classes begin each semester.

External Funding Opportunities

Career Services

Duke Engineering provides outstanding career support to master's students. Our career services include:

  • Working with a coach
  • Workshops and events
  • Engaging with employers and industry professionals

Contact admissions