Tatiana Segura


Professor of Biomedical Engineering

Professor Tatiana Segura received her BS degree in Bioengineering from the University of California Berkeley and her doctorate in Chemical Engineering from Northwestern University. Her graduate work in designing and understanding non-viral gene delivery from hydrogel scaffolds was supervised by Prof. Lonnie Shea. She pursued post-doctoral training at the Swiss Federal Institute of Technology, Lausanne under the guidance of Prof. Jeffrey Hubbell, where her focus was self-assembled polymer systems for gene and drug delivery. Professor Segura's Laboratory studies the use of materials for minimally invasive in situ tissue repair.   On this topic, she has published 113 peered reviewed publications to date. She has been recognized with the Outstanding Young Investigator Award from the American Society of Gene and Cell Therapy, the American Heart Association National Scientist Development Grant, and the CAREER award from National Science Foundation.  She was Elected to the College of Fellows at the American Institute for Medical and Biological Engineers (AIMBE) in 2017. She spent the first 11 years of her career at UCLA department of Chemical and Biomolecular Engineering and has recently relocated to Duke University, where she holds appointments in Biomedical Engineering, Neurology and Dermatology. 

Appointments and Affiliations

  • Professor of Biomedical Engineering
  • Professor in Neurology
  • Affiliate of the Regeneration Next Initiative

Contact Information

  • Office Location:
  • Office Phone:
  • Email Address: tatiana.segura@duke.edu
  • Websites:


  • Ph.D. Northwestern University, 2004

Research Interests

The design of biomaterials to promote endogenous repair and reducing inflammation through the design of the geometry of the material, and delivering genes, proteins and drugs.

Awards, Honors, and Distinctions

  • Fellow. American Institute for Medical and Biological Engineers. 2017
  • National Scientist Development Grant. American Heart Association. 2009
  • Outstanding Young Investigator Award. American Society of Gene and Cell Therapy. 2009
  • CAREER Award. National Science Foundation. 2008

Courses Taught

  • BME 790: Advanced Topics for Graduate Students in Biomedical Engineering
  • BME 791: Graduate Independent Study
  • EGR 393: Research Projects in Engineering

In the News

Representative Publications

  • Truong, NF; Kurt, E; Tahmizyan, N; Lesher-Pérez, SC; Chen, M; Darling, NJ; Xi, W; Segura, T, Microporous annealed particle hydrogel stiffness, void space size, and adhesion properties impact cell proliferation, cell spreading, and gene transfer., Acta Biomaterialia, vol 94 (2019), pp. 160-172 [10.1016/j.actbio.2019.02.054] [abs].
  • Truong, NF; Lesher-Pérez, SC; Kurt, E; Segura, T, Pathways Governing Polyethylenimine Polyplex Transfection in Microporous Annealed Particle Scaffolds., Bioconjugate Chemistry, vol 30 no. 2 (2019), pp. 476-486 [10.1021/acs.bioconjchem.8b00696] [abs].
  • Pannier, AK; Kozisek, T; Segura, T, Surface- and Hydrogel-Mediated Delivery of Nucleic Acid Nanoparticles., Methods in Molecular Biology (Clifton, N.J.), vol 1943 (2019), pp. 177-197 [10.1007/978-1-4939-9092-4_12] [abs].
  • Riley, L; Schirmer, L; Segura, T, Granular hydrogels: emergent properties of jammed hydrogel microparticles and their applications in tissue repair and regeneration., Current Opinion in Biotechnology, vol 60 (2018), pp. 1-8 [10.1016/j.copbio.2018.11.001] [abs].
  • Darling, NJ; Sideris, E; Hamada, N; Carmichael, ST; Segura, T, Injectable and Spatially Patterned Microporous Annealed Particle (MAP) Hydrogels for Tissue Repair Applications., Advanced Science (Weinheim, Baden Wurttemberg, Germany), vol 5 no. 11 (2018) [10.1002/advs.201801046] [abs].