Ken Gall

Professor in the Thomas Lord Department of Mechanical Engineering and Materials Science

Professor Gall’s research aims to develop a fundamental understanding of the relationship between the processing, structure, and mechanical properties of materials.  His scientific contributions range from the creation and understanding of shape memory metals and polymers to the discovery of a new phase transformation in metal nanowires.  His current research interests are 3D printed metals and polymers, soft synthetic biomaterials, and biopolymers with structured surface porous networks. 

In addition to his research he has consulted for industry, the US Military and the US Intelligence Community, and served as an expert witness in multiple patent and product litigations.  Finally, he is a passionate entrepreneur who uses fundamental scientific knowledge to hasten the commercialization of new materials and improve the effectiveness of existing materials.   He founded two medical device start-up companies, MedShape and Vertera who have commercialized university based technologies in the orthopedic medical device space.

Appointments and Affiliations

  • Professor in the Thomas Lord Department of Mechanical Engineering and Materials Science
  • Professor of Biomedical Engineering
  • Professor in Orthopaedic Surgery

Contact Information

  • Office Location: 144 Hudson Hall, Box 90300, Durham, NC 27708
  • Office Phone: (919) 660-5430
  • Email Address: kag70@duke.edu
  • Websites:

Education

  • B.S. University of Illinois, Urbana-Champaign, 1995
  • M.S. University of Illinois, Urbana-Champaign, 1996
  • Ph.D. University of Illinois, Urbana-Champaign, 1998

Research Interests

Materials science, mechanical properties, metals and polymers. Specialties: Shape memory materials, biomaterials, 3D printing.

Courses Taught

  • BME 494: Projects in Biomedical Engineering (GE)
  • EGR 393: Research Projects in Engineering
  • ME 391: Undergraduate Projects in Mechanical Engineering
  • ME 392: Undergraduate Projects in Mechanical Engineering
  • ME 491: Special Projects in Mechanical Engineering
  • ME 492: Special Projects in Mechanical Engineering
  • ME 591: Research Independent Study in Mechanical Engineering or Material Science
  • ME 592: Research Independent Study in Mechanical Engineering or Material Science

In the News

Representative Publications

  • Johnson, James W., Ben Gadomski, Kevin Labus, Holly Stewart, Brad Nelson, Howie Seim, Dan Regan, et al. “Novel 3D printed lattice structure titanium cages evaluated in an ovine model of interbody fusion.” Jor Spine 6, no. 3 (September 2023): e1268. https://doi.org/10.1002/jsp2.1268.
  • Peloquin, J., A. Kirillova, C. Rudin, L. C. Brinson, and K. Gall. “Prediction of tensile performance for 3D printed photopolymer gyroid lattices using structural porosity, base material properties, and machine learning.” Materials and Design 232 (August 1, 2023). https://doi.org/10.1016/j.matdes.2023.112126.
  • Peloquin, Jacob, Alina Kirillova, Elizabeth Mathey, Cynthia Rudin, L Catherine Brinson, and Ken Gall. “Tensile performance data of 3D printed photopolymer gyroid lattices.” Data in Brief 49 (August 2023): 109396. https://doi.org/10.1016/j.dib.2023.109396.
  • Bachtiar, Emilio, Katrina Knight, Pamela Moalli, and Ken Gall. “Deformation and Durability of Soft 3D-printed Polycarbonate Urethane Porous Membranes for Potential Use in Pelvic Organ Prolapse.” Journal of Biomechanical Engineering, May 2023, 1–62. https://doi.org/10.1115/1.4062490.
  • Nelson, K., C. N. Kelly, and K. Gall. “Effect of stress state on the mechanical behavior of 3D printed porous Ti6Al4V scaffolds produced by laser powder bed fusion.” Materials Science and Engineering: B 286 (December 1, 2022). https://doi.org/10.1016/j.mseb.2022.116013.