Kathryn R Nightingale

Kathryn Radabaugh Nightingale

James L. and Elizabeth M. Vincent Professor of Biomedical Engineering

The goals of our laboratory are to investigate and improve ultrasonic imaging methods for clinically-relevant problems. We do this through theoretical, experimental, and simulation methods. The main focus of our recent work is the development of novel, acoustic radiation force impulse (ARFI)-based elasticity imaging methods to generate images of the mechanical properties of tissue, involving interdisciplinary research in ultrasonics and tissue biomechanics. We have access to the engineering interfaces of several commercial ultrasound systems which allows us to design, rapidly prototype, and experimentally demonstrate custom sequences to explore novel beamforming and imaging concepts. We employ FEM modeling methods to simulate the behavior of tissues during mechanical excitation, and we have integrated these tools with ultrasonic imaging modeling tools to simulate the ARFI imaging process. We maintain strong collaborations with the Duke University Medical Center where we work to translate our technologies to clinical practice. The ARFI imaging technologies we have developed have served as the basis for commercial imaging technologies that are now being used in clinics throughout the world.  We are also studying the risks and benefits of increasing acoustic output energy for specific clinical imaging scenarios, with the goal of improving ultrasonic image quality in the difficult-to-image patient.

Appointments and Affiliations

  • James L. and Elizabeth M. Vincent Professor of Biomedical Engineering
  • Professor in the Department of Biomedical Engineering
  • Member of the Duke Cancer Institute

Contact Information

Education

  • Ph.D. Duke University, 1997
  • B.S. Duke University, 1989

Research Interests

Ultrasonic and elasticity imaging, specifically nonlinear propagation, acoustic streaming and radiation force; the intentional generation of these phenomena for the purpose of tissue characterization; finite element modeling of normal and diseased tissue when exposed to ultrasound, and performing both phantom and clinical experiments investigating these phenomena. Other areas of interest include prostate imaging, abdmoninal imaging, image-guided therapies, and the bioeffects of ultrasound.

Specialties

Medical Imaging
Medical Diagnostics
Ultrasound imaging

Courses Taught

  • BME 354L: Introduction to Medical Instrumentation
  • BME 394: Projects in Biomedical Engineering (GE)
  • BME 493: Projects in Biomedical Engineering (GE)
  • BME 494: Projects in Biomedical Engineering (GE)
  • BME 542: Principles of Ultrasound Imaging (GE, IM)
  • BME 791: Graduate Independent Study
  • BME 792: Graduate Independent Study
  • BME 845: Elasticity Imaging

In the News

Representative Publications

  • Rouze, NC; Deng, Y; Palmeri, ML; Nightingale, KR, Accounting for the Spatial Observation Window in the 2-D Fourier Transform Analysis of Shear Wave Attenuation., Ultrasound in Medicine & Biology, vol 43 no. 10 (2017), pp. 2500-2506 [10.1016/j.ultrasmedbio.2017.06.006] [abs].
  • Deng, Y; Palmeri, ML; Rouze, NC; Trahey, GE; Haystead, CM; Nightingale, KR, Quantifying Image Quality Improvement Using Elevated Acoustic Output in B-Mode Harmonic Imaging., Ultrasound in Medicine & Biology, vol 43 no. 10 (2017), pp. 2416-2425 [10.1016/j.ultrasmedbio.2017.06.024] [abs].
  • Rouze, NC; Deng, Y; Palmeri, ML; Nightingale, KR, Robust characterization of viscoelastic materials from measurements of group shear wave speeds, IEEE International Ultrasonics Symposium : [proceedings]. IEEE International Ultrasonics Symposium, vol 2016-November (2016) [10.1109/ULTSYM.2016.7728832] [abs].
  • Palmeri, M; Glass, T; Gupta, R; McCormick, M; Brown, A; Polascik, T; Rosenzweig, S; Buck, A; Nightingale, K, Comparison between 3D ARFI imaging and mpMRI in detecting clinically-significant prostate cancer lesions, IEEE International Ultrasonics Symposium : [proceedings]. IEEE International Ultrasonics Symposium, vol 2016-November (2016) [10.1109/ULTSYM.2016.7728618] [abs].
  • Pely, A; Nightingale, KR; Palmeri, ML, Dispersion analysis in skin using FEM: Characterizing the effects of the lower boundary material on the propagation of shear waves, IEEE International Ultrasonics Symposium : [proceedings]. IEEE International Ultrasonics Symposium, vol 2016-November (2016) [10.1109/ULTSYM.2016.7728410] [abs].