Kathryn R Nightingale


Theo Pilkington Distinguished Professor of Biomedical Engineering

The goals of our laboratory are to investigate and improve ultrasonic imaging methods for clinically-relevant problems. We do this through theoretical, experimental, and simulation methods. The main focus of our recent work is the development of novel, acoustic radiation force impulse (ARFI)-based elasticity imaging methods to generate images of the mechanical properties of tissue, involving interdisciplinary research in ultrasonics and tissue biomechanics. We have access to the engineering interfaces of several commercial ultrasound systems which allows us to design, rapidly prototype, and experimentally demonstrate custom sequences to explore novel beamforming and imaging concepts. We employ FEM modeling methods to simulate the behavior of tissues during mechanical excitation, and we have integrated these tools with ultrasonic imaging modeling tools to simulate the ARFI imaging process. We maintain strong collaborations with the Duke University Medical Center where we work to translate our technologies to clinical practice. The ARFI imaging technologies we have developed have served as the basis for commercial imaging technologies that are now being used in clinics throughout the world.  We are also studying the risks and benefits of increasing acoustic output energy for specific clinical imaging scenarios, with the goal of improving ultrasonic image quality in the difficult-to-image patient.

Appointments and Affiliations

  • Theo Pilkington Distinguished Professor of Biomedical Engineering
  • Professor in the Department of Biomedical Engineering
  • Member of the Duke Cancer Institute
  • Bass Fellow

Contact Information


  • Ph.D. Duke University, 1997
  • B.S. Duke University, 1989

Research Interests

Ultrasonic and elasticity imaging, specifically nonlinear propagation, acoustic streaming and radiation force; the intentional generation of these phenomena for the purpose of tissue characterization; finite element modeling of normal and diseased tissue when exposed to ultrasound, and performing both phantom and clinical experiments investigating these phenomena. Other areas of interest include prostate imaging, abdominal imaging, image-guided therapies, and the bioeffects of ultrasound.

Awards, Honors, and Distinctions

  • Lois and John L. Imhoff Distinguished Teaching Award. Pratt School of Engineering. 2018
  • Fellow. American Institute for Medical and Biological Engineering. 2016
  • Capers and Marion McDonald Teaching and Research Award. Pratt School of Engineering. 2015
  • Klein Family Distinguished Teaching Award. Pratt School of Engineering. 2007

Courses Taught

  • BME 354L: Introduction to Medical Instrumentation
  • BME 493: Projects in Biomedical Engineering (GE)
  • BME 494: Projects in Biomedical Engineering (GE)
  • BME 790L: Advanced Topics with the Lab for Graduate Students in Biomedical Engineering

In the News

Representative Publications

  • Zhang, B; Long, W; Pinton, GF; Nightingale, KR, On the Use of Spatial Coherence for in Situ Peak Rarefaction Pressure Estimation, Ieee International Ultrasonics Symposium, Ius, vol 2018-October (2018) [10.1109/ULTSYM.2018.8579928] [abs].
  • Rouze, NC; Deng, Y; Trutna, CA; Palmeri, ML; Nightingale, KR, Characterization of Viscoelastic Materials Using Group Shear Wave Speeds., Ieee Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol 65 no. 5 (2018), pp. 780-794 [10.1109/TUFFC.2018.2815505] [abs].
  • Lipman, SL; Rouze, NC; Palmeri, ML; Nightingale, KR, Impact of Acoustic Radiation Force Excitation Geometry on Shear Wave Dispersion and Attenuation Estimates., Ultrasound in Medicine & Biology, vol 44 no. 4 (2018), pp. 897-908 [10.1016/j.ultrasmedbio.2017.12.019] [abs].
  • Deng, Y; Palmeri, ML; Rouze, NC; Haystead, CM; Nightingale, KR, Evaluating the Benefit of Elevated Acoustic Output in Harmonic Motion Estimation in Ultrasonic Shear Wave Elasticity Imaging., Ultrasound Med Biol, vol 44 no. 2 (2018), pp. 303-310 [10.1016/j.ultrasmedbio.2017.10.003] [abs].
  • Hollender, P; Knight, A; Caenen, A; Shashikumar, N; Lee, I; Palmeri, M; Nightingale, K; Trahey, G, Anisotropic Constructive Shearwave Interference Measurement of Transversely Anisotropic Materials, Ieee International Ultrasonics Symposium, Ius, vol 2018-January (2018) [10.1109/ULTSYM.2018.8579927] [abs].