Daniel Reker

Reker

Assistant Professor of Biomedical Engineering

The Reker lab tightly integrates biomedical data science and wet-lab experiments for the analysis and design of therapeutic opportunities. Automated experimentation can be guided by active machine learning to generate knowledge-rich datasets. A key aspect of our research is improving our understanding of the most effective active machine learning workflows to enable the broad deployment of adaptive machine learning and automated experimentation.

We focus our adaptive model development on critical drug properties such as efficacy, biodistribution, metabolism, toxicity, and side-effects. Prospective applications of these predictions enable us to better understand limitations of currently approved medications as well as design new drug candidates, nanoparticles, and pharmaceutical formulations. By integrating clinical data analysis, we can rapidly validate the translational relevance of our predictions and conceive big data-driven protocols for precision medicine and personalized drug delivery.

Appointments and Affiliations

  • Assistant Professor of Biomedical Engineering

Contact Information

Education

  • Sc.D. Swiss Federal Institute of Technology-ETH Zurich (Switzerland), 2016

Research Interests

Integration of active machine learning, biomedical data science, and biochemical experiments for the analysis and design of personalized therapeutic opportunities.

Courses Taught

  • BME 590L: Special Topics with Lab
  • BME 791: Graduate Independent Study
  • BME 792: Continuation of Graduate Independent Study

Representative Publications

  • Reker, D; Rybakova, Y; Kirtane, AR; Cao, R; Yang, JW; Navamajiti, N; Gardner, A; Zhang, RM; Esfandiary, T; L'Heureux, J; von Erlach, T; Smekalova, EM; Leboeuf, D; Hess, K; Lopes, A; Rogner, J; Collins, J; Tamang, SM; Ishida, K; Chamberlain, P; Yun, D; Lytton-Jean, A; Soule, CK; Cheah, JH; Hayward, AM; Langer, R; Traverso, G, Computationally guided high-throughput design of self-assembling drug nanoparticles., Nature Nanotechnology (2021) [10.1038/s41565-021-00870-y] [abs].
  • Reker, D, Chapter 14: Active Learning for Drug Discovery and Automated Data Curation, vol 2021-January (2021), pp. 301-326 [10.1039/9781788016841-00301] [abs].
  • Reker, D; Hoyt, EA; Bernardes, GJL; Rodrigues, T, Adaptive Optimization of Chemical Reactions with Minimal Experimental Information, Cell Reports Physical Science, vol 1 no. 11 (2020) [10.1016/j.xcrp.2020.100247] [abs].
  • Reker, D; Blum, SM; Wade, P; Steiger, C; Traverso, G, Historical Evolution and Provider Awareness of Inactive Ingredients in Oral Medications., Pharm Res, vol 37 no. 12 (2020) [10.1007/s11095-020-02953-2] [abs].
  • Brown, N; Ertl, P; Lewis, R; Luksch, T; Reker, D; Schneider, N, Artificial intelligence in chemistry and drug design., Journal of Computer Aided Molecular Design, vol 34 no. 7 (2020), pp. 709-715 [10.1007/s10822-020-00317-x] [abs].