Adam P Wax

Wax

Professor of Biomedical Engineering

Dr. Wax's research interests include optical spectroscopy for early cancer detection, novel microscopy and
interferometry techniques.

The study of intact, living cells with optical spectroscopy offers the opportunity to observe cellular structure, organization and dynamics in a way that is not possible with traditional methods. We have developed a set of novel spectroscopic techniques for measuring spatial, temporal and refractive structure on sub-hertz and sub-wavelength scales based on using low-coherence interferometry (LCI) to detect scattered light. We have applied these techniques in different types of cell biology experiments. In one experiment, LCI measurements of the angular pattern of backscattered light are used to determine non-invasively the structure of sub-cellular organelles in cell monolayers, and the components of epithelial tissue from freshly excised rat esophagus. This work has potential as a diagnostic method for early cancer detection. In another experiment, LCI phase measurements are used to examine volume changes of epithelial cells in a monolayer in response to environmental osmolarity changes. Although cell volume changes have been measured previously, this work demonstrates for the first time the volume of just a few cells (2 or 3) tracked continuously and in situ.

Appointments and Affiliations

  • Professor of Biomedical Engineering
  • Faculty Network Member of the Duke Institute for Brain Sciences
  • Member of the Duke Cancer Institute
  • Bass Fellow

Contact Information

Education

  • Ph.D. Duke University, 1999
  • M.A. Duke University, 1996
  • B.S. Rensselaer Polytechnic Institute, 1993

Research Interests

Optical spectroscopy for early cancer detection, novel microscopy and interferometry techniques.

Awards, Honors, and Distinctions

  • Fellow. American Institute for Medical and Biological Engineering. 2014
  • Fellow. International Society for Optics and Photonics. 2010
  • Fellow. Optical Society of America. 2010
  • Faculty Early Career Development (CAREER) Program. National Science Foundation. 2004

Courses Taught

  • BME 547: Medical Software Design
  • BME 550: Modern Microscopy (GE, IM)
  • BME 551L: Biomedical Optical Spectroscopy and Tissue Optics (GE, IM)
  • BME 552: Advanced Optics
  • BME 590: Special Topics in Biomedical Engineering
  • BME 791: Graduate Independent Study
  • ECE 541: Advanced Optics
  • MENG 550: Master of Engineering Internship/Project
  • MENG 551: Master of Engineering Internship/Project Assessment
  • MOLCAN 551L: Biomedical Optical Spectroscopy and Tissue Optics (GE, IM)
  • PHYSICS 621: Advanced Optics
  • PHYSICS 791: SPECIAL READINGS

In the News

Representative Publications

  • YANG, Z; SOLTANIAN-ZADEH, S; CHU, KK; ZHANG, H; MOUSSA, L; WATTS, AE; SHAHEEN, NJ; WAX, A; FARSIU, S, Connectivity-based deep learning approach for segmentation of the epithelium in in vivo human esophageal OCT images, Biomedical Optics Express, vol 12 no. 10 (2021), pp. 6236-6340 [10.1364/BOE.434775] [abs].
  • Park, H-S; Price, H; Ceballos, S; Chi, J-T; Wax, A, Single Cell Analysis of Stored Red Blood Cells Using Ultra-High Throughput Holographic Cytometry., Cells, vol 10 no. 9 (2021) [10.3390/cells10092455] [abs].
  • Zhang, H; Kendall, WY; Jelly, ET; Wax, A, Deep learning classification of cervical dysplasia using depth-resolved angular light scattering profiles., Biomedical Optics Express, vol 12 no. 8 (2021), pp. 4997-5007 [10.1364/boe.430467] [abs].
  • Song, G; Jelly, ET; Chu, K; Kendall, WY; Wax, A, A review of low-cost and portable optical coherence tomography, Progress in Biomedical Engineering (2021) [abs].
  • Kendall, WY; Ho, D; Chu, K; Zinaman, M; Wieland, D; Moragne, K; Wax, A, Prospective detection of cervical dysplasia with scanning angle-resolved low coherence interferometry., Biomedical Optics Express, vol 11 no. 9 (2020), pp. 5197-5211 [10.1364/boe.401000] [abs].