Greg D. Field

Associate Professor of Neurobiology
My laboratory studies how the retina processes visual scenes and transmits this information to the brain. We use multi-electrode arrays to record the activity of hundreds of retina neurons simultaneously in conjunction with transgenic mouse lines and chemogenetics to manipulate neural circuit function. We are interested in three major areas. First, we work to understand how neurons in the retina are functionally connected. Second we are studying how light-adaptation and circadian rhythms alter visual processing in the retina. Finally, we are working to understand the mechanisms of retinal degenerative conditions and we are investigating potential treatments in animal models.
Appointments and Affiliations
- Associate Professor of Neurobiology
- Faculty Network Member of the Duke Institute for Brain Sciences
Contact Information
- Office Location: Bryan Research Building, 311 Research Drive Room 427D, Durham, NC 27710
- Office Phone: (919) 681-7503
- Email Address: field@neuro.duke.edu
Education
- Ph.D. University of Washington, 2004
Research Interests
Study of the retina, using multi-electrode arrays to record retina neuron activity in conjunction with transgenic mouse lines and chemogenetics to manipulate neural circuit function. Field's laboratory is working to understand the mechanisms of retinal degenerative conditions and is investigating potential treatments in animal models.
Courses Taught
- NEUROBIO 393: Research Independent Study
- NEUROBIO 793: Research in Neurobiology
- NEUROSCI 493: Research Independent Study 1
- NEUROSCI 494: Research Independent Study 2
- NEUROSCI 495: Research Independent Study 3
In the News
- Living Retina Achieves Sensitivity and Efficiency Engineers Can Only Dream About (Sep 28, 2021)
- Real Neurons are Noisy. Can Neural Implants Figure That Out? (Sep 15, 2020)
- Eyes Have a Natural Version of Night Vision (Sep 13, 2018)
Representative Publications
- Jun, NY; Field, GD; Pearson, J, Scene statistics and noise determine the relative arrangement of receptive field mosaics., Proc Natl Acad Sci U S A, vol 118 no. 39 (2021) [10.1073/pnas.2105115118] [abs].
- Wang, D; Roy, S; Rudzite, AM; Field, GD; Gong, Y, High-resolution light-field microscopy with patterned illumination., Biomedical Optics Express, vol 12 no. 7 (2021), pp. 3887-3901 [10.1364/BOE.425742] [abs].
- Scalabrino, ML; Thapa, M; Davis, E; Sampath, AP; Chen, J; Field, GD, Time-Dependent Changes in ON Bipolar Cell Transcriptomes before and after Genetic Rescue from Rod Degeneration, Molecular Therapy, vol 29 no. 4 (2021), pp. 266-266 [abs].
- Roy, S; Jun, NY; Davis, EL; Pearson, J; Field, GD, Inter-mosaic coordination of retinal receptive fields., Nature, vol 592 no. 7854 (2021), pp. 409-413 [10.1038/s41586-021-03317-5] [abs].
- Hays, CL; Sladek, AL; Field, GD; Thoreson, WB, Properties of multivesicular release from mouse rod photoreceptors support transmission of single-photon responses., Elife, vol 10 (2021) [10.7554/eLife.67446] [abs].