New Biomaterial Helps Regrow Brain Tissue After Stroke in Mice

May 21, 2018

New stroke-healing gel helped regrow neurons and blood vessels in mice with stroke-damaged brains, hinting at what may someday be a new therapy for stroke in people

Adapted from a press release from UCLA

slide stain of neural regrowth

A stained slide showing regrowth in a neural cavity caused by stroke. The red segments are new blood vessels while the green depicts new nerve fibers.

In a first-of-its-kind finding, a new stroke-healing gel helped regrow neurons and blood vessels in mice with stroke-damaged brains, Duke University and UCLA researchers report in the May 21 issue of Nature Materials.

The results suggest that such an approach may someday be a new therapy for stroke in people, said Tatiana Segura, professor of biomedical engineering at Duke, who recently moved her laboratory from UCLA.

“We tested this in laboratory mice to determine if it would repair the brain in a model of stroke, and lead to recovery,” said S. Thomas Carmichael, professor and chair of neurology at UCLA, who collaborated on the study with Segura. “This study indicated that new brain tissue can be regenerated in what was previously just an inactive brain scar after stroke.”

The brain has a limited capacity for recovery after stroke and other diseases. Unlike some other organs in the body, such as the liver or skin, the brain does not regenerate new connections, blood vessels or new tissue structures. Tissue that dies in the brain from stroke is absorbed, leaving a cavity, devoid of blood vessels, neurons or axons, the thin nerve fibers that project from neurons.

To see if healthy tissue surrounding the cavity could be coaxed into healing the stroke injury, Segura engineered a gel to inject into the stroke cavity that thickens to mimic the properties of brain tissue, creating a scaffolding for new growth.

Tatiana SeguraThe gel is infused with molecules that stimulate blood vessel growth and suppress inflammation, since inflammation results in scars and impedes regrowth of functional tissue.

After 16 weeks, stroke cavities in mice contained regenerated brain tissue, including new neural networks—a result that had not been seen before. The mice with new neurons showed improved motor behavior, though the exact mechanism wasn’t clear.

“The new axons could actually be working,” said Segura. “Or the new tissue could be improving the performance of the surrounding, unharmed brain tissue.”

The gel was eventually absorbed by the body, leaving behind only new tissue.

This research was designed to explore recovery in acute stroke, or the period immediately following stroke—in mice, that is five days; in humans, that is two months. Next, Carmichael and Segura are determining if brain tissue can be regenerated in mice long after the stroke injury. More than 6 million Americans are living with the long-term outcomes of stroke, known as chronic stroke.

In addition to Carmichael and Segura, other authors of the paper are Lina Nih and Shiva Gojgini, both of UCLA.

The study was supported by funds from the National Institutes of Health.

CITATION: “Dual-function injectable angiogenic biomaterial for the repair of brain tissue following stroke.” Lina R. Nih, Shiva Gojgini, S. Thomas Carmichael and Tatiana Segura. Nature Materials, 2018. DOI: 10.1038/s41563-018-0083-8

# # #